第35章 沒錯,就有這種操作
我隻想當一個安靜的學霸 作者:術小城 投票推薦 加入書簽 留言反饋
第35章 沒錯,就有這種操作
“最後一題,還剩最後一題。”
沈奇雖然對前五題的解答有信心,但他不知道其他選手的狀況。
如果要拿到金牌,最保險的辦法就是答對全部題目。
當沈奇認真審視完最後一題,他覺得出這題的人簡直就是魂淡。
最後一題是這樣寫的:
“時間穿越到公元前500年,而你是希帕蘇斯的師弟,請證明不存在某個整數與整數之比,它的平方為2。”
“請小心,你的師兄希帕蘇斯剛被你的老師畢達哥拉斯淹死,千萬不要嚐試幾何作圖法去完成證明,否則你也會被淹死。”
“一旦你被淹死,你將拿不到哪怕一分。”
是的,這就是全國數學聯賽決賽的壓軸題,就是這麽魂淡。
題麵轉化為數學語言其實非常簡單,即:請證明根號2是無理數。
無理數也就是無限不循環小數,比如1.41421356……它沒有規律,不講道理,就這麽無窮無盡的延伸下去,從不出現循環。
即便初中生也知道根號2是無理數,並能寫出至少一種證明方法,去證明根號2是無理數。
而沈奇能寫出至少八種方法,證明根號2是無理數。
這題好簡單呀,初二的學生都會做啦。
真的嗎?
事實真是這樣嗎?
不,並不是。
這是國決壓軸題,並沒有你想象的那麽low。
因為在出題老師的設定中,沈奇穿越到了古希臘,成為了畢達哥拉斯的學生,希帕蘇斯的師弟。
學數學的人不可能不知道畢達哥拉斯派,以及這個學派的創始人畢達哥拉斯。
畢達哥拉斯是數學史上的遠古大神,他在薩摩斯島上建立了一個神秘組織,集科學、宗教、哲學為一身,用現在的話說,這個組織極有可能就是傳說中的“科學神教”。
畢達哥拉斯派的核心宗旨就是:數學研究抽象概念。
直到21世紀的今天,數學家們也承認畢達哥拉斯在2500年前提出的觀點,數學研究的是抽象概念。
畢達哥拉斯一生中有兩大愛好,研究數學,以及殺學生,越聰明成績越好的學生越要殺。
希帕蘇斯是畢達哥拉斯的得意弟子,他通過幾何作圖法,證明了不存在某個整數與整數之比,它的平方為2。這個方法記錄於初中二年級的課本上,是初中生接觸無理數的啟蒙篇章。
然後希帕蘇斯就被畢達哥拉斯綁起來丟海裏喂魚了,讓你裝逼?裝逼者必須死。
畢達哥拉斯死後,希帕蘇斯所創的幾何證明法最終流傳於世,他用生命換來的奇思妙思即今天初中課本上的“正方形無窮輾轉相除算法求最大公約數”。
在國決壓軸題特殊的題境中,沈奇被出題者設定為希帕蘇斯的師弟,所以他不能使用幾何法去證明根號2是無理數。否則會被出題者“淹死”,連一分都拿不到。
在沈奇掌握的至少八種證明方法中,當然也有其他辦法,但他是希帕蘇斯的師弟,生活在2500年前,那個時代尚不存在質數法,甚至連根號都沒出現,所以其他的證明方法自動失效。
題麵上寫的是“請證明不存在某個整數與整數之比,它的平方為2”,而不是“請證明根號2是無理數”。
所以這題很變態。
這也印證了數學界的一句老話:simple-is-hard
越簡單,越困難。
“糾結,糾結啊,在這麽多變態的限製條件下,這題到底該如何破?”
沈奇顯的有些焦慮,哢,他用力過猛,不小心將鉛筆掰斷,手心中滿是汗水。
在國預以及國決前五題的解題過程中,沈奇並非沒有遇到麻煩。
雖然遇到麻煩,但沈奇總歸能get到一點點思路,並順藤摸瓜最終得到正確答案。
而國決壓軸題,“希帕蘇斯的詛咒”使沈奇無計可施,畢達哥拉斯的死亡凝視穿越時空讓沈奇如芒在背。
“我該怎麽辦,我能怎麽辦?這題出的太刁鑽了,已遠超一個高中生乃至大學生對數學的認知,這特麽可能隻有數學係的研究生甚至博士生才會做吧?”
這是沈奇幾個月來遭遇的最大困境,這讓他想起了學渣時期,題目寫的字兒我全認識,就是不知道該怎麽做。
時間一分一秒的過去,距交卷還剩半個小時。
沈奇在壓軸題上耗費了2個小時寫不出一個字,而前兩題他一共花費2個小時。
“張老師,曹老師,田老師,你們教教我這題該如何破,要走那種路線?我完全沒有思路啊!”學生在遇到難題時自然而然會想到老師,但沈奇發現,他從小學到高中,所有的數學老師都沒教過一種方法,能不用希帕蘇斯無窮幾何法以及後世的代數方法,去證明根號2是無理數。
我們都知道人一出生就自帶一個腦袋兩條胳膊,難的是如何證明這個公認的事實,為什麽不是三個腦袋六條胳膊,真正的原因是什麽?是投胎技術導致的嗎,如果投胎技術是真因,也請證明之。
simple-is-hard
沈奇現在所遇的困境大致如此,清楚結論,無法證明。
“張老師,曹老師,田老師,我可能要讓你們失望了,我知道裝逼裝多了,遲早有天會被丟海裏喂魚。張老師,曹老師,田老師……臥槽,田老師!”沈奇一個激靈,一絲稍縱即逝的靈感如過電般在他大腦中竄動。
“對,沒錯,田老師,古巴比倫數係,六十進製!”
一種劫後餘生的刺激在沈奇體內激蕩,來首都之前,在省隊集訓的時候,田老師教過古巴比倫數係的六十進製。
古巴比倫人曾用古老的六十進製算出了根號2的近似值,這是5000年之前的方法,田老師的私貨。
六十進製比畢達哥拉斯更加古老,所以我使用六十進製不犯規!沈奇提筆就寫:
▲
▲▲
▲▲▲
……
◆
……
▼
……
▲▲▲-▏◆-▼
……
沈奇寫的是楔形文字,他在用楔形文字做出證明,純正的古巴比倫六十進製數係證明,數學五千多年曆史上最古老的分支。
在古巴比倫六十進製數係中,▲代表1,▲▲代表2,▲▲▲代表3……同樣的楔形數學記號可以一直疊加的9,表示1-9。
◆代表10,▼代表60。
▏◆代表乘號,在古巴比倫語裏讀做“愛蕊”。
▲▲▲▏◆▼表示3乘以60,沈奇需要做個六十進製的愛蕊,這樣就可以順利進入古巴比倫數係特殊的倒數表。
古巴比倫人把倒數化為六十進製的“小數”,實際上他們當時並未意識到這是小數,所以加了引號。
進入古巴比倫倒數表的小數領域之後,沈奇越來越興奮,他的直覺告訴他,他正在用一種牛逼的方法證明一個無比荒誕的題目,而且即將成功!
“哈哈哈,簡直就是神操作,天秀!”
沈奇的證明過程全部用的是楔形文字,最終他寫出答案:▲▲◆▼▲▲▲▲▲▲▲▲……
這時緊促的鈴聲響起,4.5個小時的競賽時間已到。
沈奇倉促交卷,沒有時間檢查。
這是他參加了這麽多場數競比賽,唯一一場沒時間檢查的比賽,全國決賽。
不管如何,本屆國決已結束,沈奇能做的就是等待結果。
下午三點,中華數學會拆封所有的國決考卷,閱卷工作開始。
傍晚七點,閱卷室內一位閱卷評委目瞪口呆,他是中國數學會的劉幹事。
劉幹事正在批閱沈奇的國決考卷,當他看到沈奇最後一題全部用楔形文字作答,整個人都不好了:“小聞,快……快把我的速效救星丸……拿過來……在我的公文包裏……”
(本章完)
“最後一題,還剩最後一題。”
沈奇雖然對前五題的解答有信心,但他不知道其他選手的狀況。
如果要拿到金牌,最保險的辦法就是答對全部題目。
當沈奇認真審視完最後一題,他覺得出這題的人簡直就是魂淡。
最後一題是這樣寫的:
“時間穿越到公元前500年,而你是希帕蘇斯的師弟,請證明不存在某個整數與整數之比,它的平方為2。”
“請小心,你的師兄希帕蘇斯剛被你的老師畢達哥拉斯淹死,千萬不要嚐試幾何作圖法去完成證明,否則你也會被淹死。”
“一旦你被淹死,你將拿不到哪怕一分。”
是的,這就是全國數學聯賽決賽的壓軸題,就是這麽魂淡。
題麵轉化為數學語言其實非常簡單,即:請證明根號2是無理數。
無理數也就是無限不循環小數,比如1.41421356……它沒有規律,不講道理,就這麽無窮無盡的延伸下去,從不出現循環。
即便初中生也知道根號2是無理數,並能寫出至少一種證明方法,去證明根號2是無理數。
而沈奇能寫出至少八種方法,證明根號2是無理數。
這題好簡單呀,初二的學生都會做啦。
真的嗎?
事實真是這樣嗎?
不,並不是。
這是國決壓軸題,並沒有你想象的那麽low。
因為在出題老師的設定中,沈奇穿越到了古希臘,成為了畢達哥拉斯的學生,希帕蘇斯的師弟。
學數學的人不可能不知道畢達哥拉斯派,以及這個學派的創始人畢達哥拉斯。
畢達哥拉斯是數學史上的遠古大神,他在薩摩斯島上建立了一個神秘組織,集科學、宗教、哲學為一身,用現在的話說,這個組織極有可能就是傳說中的“科學神教”。
畢達哥拉斯派的核心宗旨就是:數學研究抽象概念。
直到21世紀的今天,數學家們也承認畢達哥拉斯在2500年前提出的觀點,數學研究的是抽象概念。
畢達哥拉斯一生中有兩大愛好,研究數學,以及殺學生,越聰明成績越好的學生越要殺。
希帕蘇斯是畢達哥拉斯的得意弟子,他通過幾何作圖法,證明了不存在某個整數與整數之比,它的平方為2。這個方法記錄於初中二年級的課本上,是初中生接觸無理數的啟蒙篇章。
然後希帕蘇斯就被畢達哥拉斯綁起來丟海裏喂魚了,讓你裝逼?裝逼者必須死。
畢達哥拉斯死後,希帕蘇斯所創的幾何證明法最終流傳於世,他用生命換來的奇思妙思即今天初中課本上的“正方形無窮輾轉相除算法求最大公約數”。
在國決壓軸題特殊的題境中,沈奇被出題者設定為希帕蘇斯的師弟,所以他不能使用幾何法去證明根號2是無理數。否則會被出題者“淹死”,連一分都拿不到。
在沈奇掌握的至少八種證明方法中,當然也有其他辦法,但他是希帕蘇斯的師弟,生活在2500年前,那個時代尚不存在質數法,甚至連根號都沒出現,所以其他的證明方法自動失效。
題麵上寫的是“請證明不存在某個整數與整數之比,它的平方為2”,而不是“請證明根號2是無理數”。
所以這題很變態。
這也印證了數學界的一句老話:simple-is-hard
越簡單,越困難。
“糾結,糾結啊,在這麽多變態的限製條件下,這題到底該如何破?”
沈奇顯的有些焦慮,哢,他用力過猛,不小心將鉛筆掰斷,手心中滿是汗水。
在國預以及國決前五題的解題過程中,沈奇並非沒有遇到麻煩。
雖然遇到麻煩,但沈奇總歸能get到一點點思路,並順藤摸瓜最終得到正確答案。
而國決壓軸題,“希帕蘇斯的詛咒”使沈奇無計可施,畢達哥拉斯的死亡凝視穿越時空讓沈奇如芒在背。
“我該怎麽辦,我能怎麽辦?這題出的太刁鑽了,已遠超一個高中生乃至大學生對數學的認知,這特麽可能隻有數學係的研究生甚至博士生才會做吧?”
這是沈奇幾個月來遭遇的最大困境,這讓他想起了學渣時期,題目寫的字兒我全認識,就是不知道該怎麽做。
時間一分一秒的過去,距交卷還剩半個小時。
沈奇在壓軸題上耗費了2個小時寫不出一個字,而前兩題他一共花費2個小時。
“張老師,曹老師,田老師,你們教教我這題該如何破,要走那種路線?我完全沒有思路啊!”學生在遇到難題時自然而然會想到老師,但沈奇發現,他從小學到高中,所有的數學老師都沒教過一種方法,能不用希帕蘇斯無窮幾何法以及後世的代數方法,去證明根號2是無理數。
我們都知道人一出生就自帶一個腦袋兩條胳膊,難的是如何證明這個公認的事實,為什麽不是三個腦袋六條胳膊,真正的原因是什麽?是投胎技術導致的嗎,如果投胎技術是真因,也請證明之。
simple-is-hard
沈奇現在所遇的困境大致如此,清楚結論,無法證明。
“張老師,曹老師,田老師,我可能要讓你們失望了,我知道裝逼裝多了,遲早有天會被丟海裏喂魚。張老師,曹老師,田老師……臥槽,田老師!”沈奇一個激靈,一絲稍縱即逝的靈感如過電般在他大腦中竄動。
“對,沒錯,田老師,古巴比倫數係,六十進製!”
一種劫後餘生的刺激在沈奇體內激蕩,來首都之前,在省隊集訓的時候,田老師教過古巴比倫數係的六十進製。
古巴比倫人曾用古老的六十進製算出了根號2的近似值,這是5000年之前的方法,田老師的私貨。
六十進製比畢達哥拉斯更加古老,所以我使用六十進製不犯規!沈奇提筆就寫:
▲
▲▲
▲▲▲
……
◆
……
▼
……
▲▲▲-▏◆-▼
……
沈奇寫的是楔形文字,他在用楔形文字做出證明,純正的古巴比倫六十進製數係證明,數學五千多年曆史上最古老的分支。
在古巴比倫六十進製數係中,▲代表1,▲▲代表2,▲▲▲代表3……同樣的楔形數學記號可以一直疊加的9,表示1-9。
◆代表10,▼代表60。
▏◆代表乘號,在古巴比倫語裏讀做“愛蕊”。
▲▲▲▏◆▼表示3乘以60,沈奇需要做個六十進製的愛蕊,這樣就可以順利進入古巴比倫數係特殊的倒數表。
古巴比倫人把倒數化為六十進製的“小數”,實際上他們當時並未意識到這是小數,所以加了引號。
進入古巴比倫倒數表的小數領域之後,沈奇越來越興奮,他的直覺告訴他,他正在用一種牛逼的方法證明一個無比荒誕的題目,而且即將成功!
“哈哈哈,簡直就是神操作,天秀!”
沈奇的證明過程全部用的是楔形文字,最終他寫出答案:▲▲◆▼▲▲▲▲▲▲▲▲……
這時緊促的鈴聲響起,4.5個小時的競賽時間已到。
沈奇倉促交卷,沒有時間檢查。
這是他參加了這麽多場數競比賽,唯一一場沒時間檢查的比賽,全國決賽。
不管如何,本屆國決已結束,沈奇能做的就是等待結果。
下午三點,中華數學會拆封所有的國決考卷,閱卷工作開始。
傍晚七點,閱卷室內一位閱卷評委目瞪口呆,他是中國數學會的劉幹事。
劉幹事正在批閱沈奇的國決考卷,當他看到沈奇最後一題全部用楔形文字作答,整個人都不好了:“小聞,快……快把我的速效救星丸……拿過來……在我的公文包裏……”
(本章完)