從任意一個紐扣來看,離它最近的[url紐扣以某種速度退行,再下一個紐扣則以兩倍數度退行,依此類推。在你看來,紐扣離得越遠,它退行得越快。因此這種膨脹意味著退行速度與距離成正比-這是一個極為重要的關係。借助這個圖像,我們就可想象出光波是,難怪哈勃發現,紅移量與距離成正比,同這個簡單的圖像模擬結果完全一致。
大爆炸時空的一個重要特點就是視界的存在:由於宇宙具有有限的年齡,並且光具有有限的速度,從而可能存在某些過去的事件無法通過光向我們傳遞信息。從這一分析可知,存在這樣一個極限或稱為過去視界,隻有在這個極限距離以內的事件才有可能被觀測到。另一方麵,由於空間在不斷膨脹,並且越遙遠的物體退行速度越大,從而導致從我們這裏發出的光有可能永遠也無法到達那裏。從這一分析可知,存在這樣一個極限或稱為未來視界,隻有在這個極限距離以內的事件才有可能被我們所影響。以上兩種視界的存在與否取決於描述我們宇宙的flrw模型的具體形式:我們現有對極早期宇宙的認知意味著宇宙應當存在一個過去視界,不過在實驗中我們的觀測仍然被早期宇宙對電磁波的不透明性所限製,這導致我們在過去視界因空間膨脹而退行的情形下依然無法通過電磁波觀測到更久遠的事件。另一方麵,假如宇宙的膨脹一直加速下去,宇宙也會存在一個未來視界。
最後還有一個證實熾熱高密度宇宙起源理論的證據。隻要知道今天熱輻射的溫度,由熱大爆炸理論很容易計算出宇宙誕生後約1秒時各處的溫度約為100億度,這對現有的原子核的合成來說也是太高了。那時物質必定被撕裂成最基本的成分,形成一鍋誇克膠子湯,諸如質子、中子和電子。但是,隨著這鍋湯變冷,核反應就可能出現了。
采用大爆炸模型可以計算氦-4、氦-3、氘和鋰-7等輕元素相對普通氫元素在宇宙中所占含量的比例。所有這些輕元素的豐度都取決於一個參數,即早期宇宙中光子與重子的比例,而這個參數的計算與微波背景輻射漲落的具體細節無關。大爆炸理論所推測的輕元素比例(這裏是元素的總質量之比而非數量之比)大約為:氦-4氫=0.25,氘氫=10^-3,氦-3氫=10^-4,鋰-7氫=10^-7。
實際測量到的各種輕元素豐度和從光子重子比例推算出的理論值加以比較,可以發現它們是粗略符合的。其中理論值和測量值符合最好的是氘元素,氦-4的理論值和測量值接近但仍有差別,鋰-7則是差了兩倍,對於後兩種元素的測算存在著較大的係統隨機誤差。盡管如此,大爆炸核合成理論所預言的輕元素豐度與實際觀測可以認為是基本符合,這是對大爆炸理論的強有力支持。到目前為止,還沒有其它理論能夠很好地解釋並給出這些輕元素的相對豐度。同時,由大爆炸理論所預言的宇宙,其中可被“調控”的氦元素含量也不可能超出或低於現有豐度的20%至30%。事實上,很多觀測結果現今也隻有大爆炸理論可以解釋,例如為什麽早期宇宙中氦的豐度要高於氘,而氘的含量又要高於氦-3,而且比例又是常數等。
對於大爆炸後最初的幾分鍾,相關的觀測嚴重缺乏,最早期宇宙物質——能量的實際形式很大程度上仍隻是猜測。大一統理論預測了特定類型的粒子(如難以捉摸的磁單極子),而超弦、超對稱、超引力以及其他多維理論都預測了各自原初粒子及作用力。
物質對反物質的絕對優勢也是一個需要透徹說明的經驗性事實。其他主要問題都與暗物質和暗能量的產生和本質有關(通常認為量子真空是二者的主要提供方)。
引力奇點(gravitationalsingrity?)是大爆炸宇宙論所說到的一個“點”,即“大爆炸”的起始點。該理論認為宇宙(時間-空間)是從這一“點”的“大爆炸”後而膨脹形成的。奇點是一個密度無限大、時空曲率無限高、熱量無限高、體積無限小的“點”,一切已知物理定律均在奇點失效。
我們熟知的物理學定律失效的地點。奇點一般被看成點,但原則上它們可以取一維的線或甚至二維的膜的形式。按照廣義相對論的方程式,隻要形成了一個無自轉的史瓦西黑洞,該黑洞事件視界內部的物質必然在引力作用下塌陷成一個密度無窮大的點,即奇點(羅傑·彭羅斯)。宇宙從大爆炸開始的均勻膨脹就是這種黑洞坍縮的鏡像反轉,意味著宇宙誕生在一個奇點中。
在以上兩種情況下,方程式都沒有考慮量子理論。當我們處理的物體小於普朗克長度,或時間短於普朗克時間時,已知的物理學定律,包括廣義相對論,看來真會失效。這意味著,在那樣的尺度上,合情合理的設想將是,向奇點坍縮的物質受到量子過程的影響,有可能‘反彈’而轉為向外膨脹到另一組維度中去。有人主張,大爆炸‘奇點’實際上就是這樣一種反彈。
加州理工學院的理論物理學教授基普·桑尼把量子奇點說成是引力將空間和時間彼此‘分離’的地方,然後再將時間概念和空間明確性一一破壞,留下來的是一個任何東西都可能從中出現的‘量子泡沫’(《黑洞和時間翹曲》)。奇點——尤其是與自轉黑洞和裸奇點(如果存在的話)相關聯的奇點——甚至可能容許實現時間旅行。
這個奇點,真是比較奇怪。首先就是物理規律讓大家不理解。其次,你說你沒事兒為啥要爆炸?你這一爆炸,才引出了後麵的這麽多麻煩是來。
才給那些風流人物提供了空間,時間,盡情展示自己的才華!
大爆炸時空的一個重要特點就是視界的存在:由於宇宙具有有限的年齡,並且光具有有限的速度,從而可能存在某些過去的事件無法通過光向我們傳遞信息。從這一分析可知,存在這樣一個極限或稱為過去視界,隻有在這個極限距離以內的事件才有可能被觀測到。另一方麵,由於空間在不斷膨脹,並且越遙遠的物體退行速度越大,從而導致從我們這裏發出的光有可能永遠也無法到達那裏。從這一分析可知,存在這樣一個極限或稱為未來視界,隻有在這個極限距離以內的事件才有可能被我們所影響。以上兩種視界的存在與否取決於描述我們宇宙的flrw模型的具體形式:我們現有對極早期宇宙的認知意味著宇宙應當存在一個過去視界,不過在實驗中我們的觀測仍然被早期宇宙對電磁波的不透明性所限製,這導致我們在過去視界因空間膨脹而退行的情形下依然無法通過電磁波觀測到更久遠的事件。另一方麵,假如宇宙的膨脹一直加速下去,宇宙也會存在一個未來視界。
最後還有一個證實熾熱高密度宇宙起源理論的證據。隻要知道今天熱輻射的溫度,由熱大爆炸理論很容易計算出宇宙誕生後約1秒時各處的溫度約為100億度,這對現有的原子核的合成來說也是太高了。那時物質必定被撕裂成最基本的成分,形成一鍋誇克膠子湯,諸如質子、中子和電子。但是,隨著這鍋湯變冷,核反應就可能出現了。
采用大爆炸模型可以計算氦-4、氦-3、氘和鋰-7等輕元素相對普通氫元素在宇宙中所占含量的比例。所有這些輕元素的豐度都取決於一個參數,即早期宇宙中光子與重子的比例,而這個參數的計算與微波背景輻射漲落的具體細節無關。大爆炸理論所推測的輕元素比例(這裏是元素的總質量之比而非數量之比)大約為:氦-4氫=0.25,氘氫=10^-3,氦-3氫=10^-4,鋰-7氫=10^-7。
實際測量到的各種輕元素豐度和從光子重子比例推算出的理論值加以比較,可以發現它們是粗略符合的。其中理論值和測量值符合最好的是氘元素,氦-4的理論值和測量值接近但仍有差別,鋰-7則是差了兩倍,對於後兩種元素的測算存在著較大的係統隨機誤差。盡管如此,大爆炸核合成理論所預言的輕元素豐度與實際觀測可以認為是基本符合,這是對大爆炸理論的強有力支持。到目前為止,還沒有其它理論能夠很好地解釋並給出這些輕元素的相對豐度。同時,由大爆炸理論所預言的宇宙,其中可被“調控”的氦元素含量也不可能超出或低於現有豐度的20%至30%。事實上,很多觀測結果現今也隻有大爆炸理論可以解釋,例如為什麽早期宇宙中氦的豐度要高於氘,而氘的含量又要高於氦-3,而且比例又是常數等。
對於大爆炸後最初的幾分鍾,相關的觀測嚴重缺乏,最早期宇宙物質——能量的實際形式很大程度上仍隻是猜測。大一統理論預測了特定類型的粒子(如難以捉摸的磁單極子),而超弦、超對稱、超引力以及其他多維理論都預測了各自原初粒子及作用力。
物質對反物質的絕對優勢也是一個需要透徹說明的經驗性事實。其他主要問題都與暗物質和暗能量的產生和本質有關(通常認為量子真空是二者的主要提供方)。
引力奇點(gravitationalsingrity?)是大爆炸宇宙論所說到的一個“點”,即“大爆炸”的起始點。該理論認為宇宙(時間-空間)是從這一“點”的“大爆炸”後而膨脹形成的。奇點是一個密度無限大、時空曲率無限高、熱量無限高、體積無限小的“點”,一切已知物理定律均在奇點失效。
我們熟知的物理學定律失效的地點。奇點一般被看成點,但原則上它們可以取一維的線或甚至二維的膜的形式。按照廣義相對論的方程式,隻要形成了一個無自轉的史瓦西黑洞,該黑洞事件視界內部的物質必然在引力作用下塌陷成一個密度無窮大的點,即奇點(羅傑·彭羅斯)。宇宙從大爆炸開始的均勻膨脹就是這種黑洞坍縮的鏡像反轉,意味著宇宙誕生在一個奇點中。
在以上兩種情況下,方程式都沒有考慮量子理論。當我們處理的物體小於普朗克長度,或時間短於普朗克時間時,已知的物理學定律,包括廣義相對論,看來真會失效。這意味著,在那樣的尺度上,合情合理的設想將是,向奇點坍縮的物質受到量子過程的影響,有可能‘反彈’而轉為向外膨脹到另一組維度中去。有人主張,大爆炸‘奇點’實際上就是這樣一種反彈。
加州理工學院的理論物理學教授基普·桑尼把量子奇點說成是引力將空間和時間彼此‘分離’的地方,然後再將時間概念和空間明確性一一破壞,留下來的是一個任何東西都可能從中出現的‘量子泡沫’(《黑洞和時間翹曲》)。奇點——尤其是與自轉黑洞和裸奇點(如果存在的話)相關聯的奇點——甚至可能容許實現時間旅行。
這個奇點,真是比較奇怪。首先就是物理規律讓大家不理解。其次,你說你沒事兒為啥要爆炸?你這一爆炸,才引出了後麵的這麽多麻煩是來。
才給那些風流人物提供了空間,時間,盡情展示自己的才華!