策梅洛得知這個情況之後,想著手處理這個難題。策梅洛認為,想要解決理發師悖論問題,就需要規範集合論。不能再是按照康托爾的樸素集合論那樣簡單的進行了。


    策梅洛對弗蘭克爾說:“理發師的麻煩,摧毀了集合論,那集合公理化這個數學工程是沒法做下去了。”


    弗蘭克爾說:“這個問題確實棘手,但是貌似我們還是可以有辦法的。”


    策梅洛說:“出現如此大的漏洞,不會那麽容易有辦法吧?”


    弗蘭克爾說:“羅素說的理發師問題,這是一個定義上的問題。不是每個數學模型都會有如此兒戲般的定義。我們隻要在集合公理上加上一條,不要用類似有理發師悖論的定義了。”


    策梅洛說:“廢話,我還不知道嗎?可問題有其他類型的悖論該怎麽辦?脆弱的集合論隨時都會被各種古怪的話語所摧毀。”


    弗蘭克爾說:“你都說,古怪的話語,我們隻要不要讓古怪的話語在其中出現,問題不就解決了?”


    策梅洛說:“如果做到這一點,難道是在其中設置一些限製,就像是法律規定一樣,不要出現一些東西?”


    弗蘭克爾說:“當然了,正是有太多怪東西,我們分類鏟除不就可以了?”


    兩個人商量著,根據前人的基礎,創立了公理化集合論。其中有九條,這九條有了,任何集合公裏都可以建立在這個基礎上使用了。其中第二條,直接就排除掉了理發師悖論的問題。


    一,外延公理:一個集合是由其元素決定的。兩個元素相等則集合相等。


    二,分離公理模式:一個公理元素對應的性質同時為真,才能是一個集合。


    三,配對公理:兩個集合中任意兩個元素配對後可以形成一個集合。


    四,並集公理:讓兩個集合元素加起來,形成一個新集合。


    五,冪集公理(子集之集公理):存在以已知集合的一切子集為元素的集合。


    前五個集合,消除了可能會出現羅素理發師悖論的可能性。


    六,無窮公理:存在歸納集。也就是說,存在一集合x,它有無窮多元素。


    七,替換公理模式(置換公理):也就是說,由f(x)所定義的函數的定義域在t中的時候,那麽它的值域可限定在s中。


    八,正則公理:也叫基礎公理。所有集都是良基集。說明一個集合的元素都具有最小性質,例如,不允許出現x屬於x的情況。


    前八個是zf公裏,再加上第九個就變成zfc公理。


    九,選擇公理:也叫策梅洛公理,對於任意兩兩不交的集合族,存在集合c,使對所給的族中的每個集合x,集合x與c的交恰好隻含一個元素。

章節目錄

閱讀記錄

數學心所有內容均來自互聯網,繁體小說網隻為原作者蔡澤禹的小說進行宣傳。歡迎各位書友支持蔡澤禹並收藏數學心最新章節