祖暅看到一個小孩在撥弄銅錢,左邊整整齊齊疊放8枚,右邊有點亂的疊放成8枚。
祖暅看著這兩個8枚銅錢,心裏突然在想:“不管怎麽疊放,這兩排銅錢都是一樣多的。”
都芳看到祖暅如此說:“這不是廢話嗎?不管怎麽放,當然都是一樣多的了。”
祖暅說:“那是因為這兩排銅錢,每一層都是一樣。”
都芳對祖暅說的話,更摸不著頭腦,但是看到祖暅已經有了某種發現。
祖暅說:“我知道,劉徽的對於球體的計算是錯誤的。”
都芳說:“他提出的難方法是取每邊為1寸的正方體棋子八枚,拚成一個邊長為2寸的正方體,在正方體內畫內切圓柱體,再在橫向畫一個同樣的內切圓柱體。這樣兩個圓柱所包含的立體共同部分像兩把上下對稱的傘,劉徽將其取名為“牟合方蓋”。根據計算得出球體積是牟合方蓋體的體積的四分之三,可是圓柱體又比牟合方蓋大,但是《九章算術》中得出球的體積是圓柱體體積的四分之三,顯然《九章算術》中的球體積計算公式是錯誤的。劉徽認為隻要求出牟合方蓋的體積,就可以求出球的體積。可怎麽也找不出求導牟合方蓋體積的途徑。”
祖暅說:“我想到了,隻要使用剛剛那個銅錢的原理,就可以計算出來球體體積了。”
都芳疑惑的說:“你剛剛發現了什麽原理?”
祖暅說:“太簡單了。“兩個同高的立體,如在等高處的截麵積相等,則體積相等。更詳細點說就是,界於兩個平行平麵之間的兩個立體,被任一平行於這兩個平麵的平麵所截,如果兩個截麵的麵積相等,則這兩個立體的體積相等。”
都芳說:“這如果求球體體積?找一個跟球體登高的東西嗎?”
祖暅說:“知道半球體,就會知道整個球體體積。而半球體與圓柱取出其中圓錐剩下的”
祖暅說著,畫出了一個半球體,然後在旁邊對齊畫出登高圓柱體,這個圓柱體直徑與半球體直徑一樣。
祖暅在圓柱體裏畫出了一個與圓柱等高的圓錐,並且指示這部分的圓錐已經取出來了。
都芳說:“那就留下了一個缺圓錐的圓柱了。怎麽證明,這部分跟旁邊的半球體積一樣。”
祖暅說:“跟剛剛小孩那兩排8枚銅錢的原理一樣。”
祖暅說著,畫出任一截麵,截取了缺圓錐圓柱體和半球,把截取的這兩個麵積畫出來。
祖暅對都芳說:“不論我的截麵如何挪動,你都能發現半球截麵和那缺圓錐圓柱的截麵是相等的。隻要我能求出這個缺圓錐圓柱的體積,就可以求出半球體。”
都芳說:“缺圓錐的圓柱是原來圓柱的三分之二的體積啊。所以一個球體體積應該是。”
都芳邊想邊算,說:“所以一個球體是這個圓柱的三分之四的體積。”
祖暅說:“劉徽居然認為是四分之三,他算反了,哈哈哈。”
祖暅看著這兩個8枚銅錢,心裏突然在想:“不管怎麽疊放,這兩排銅錢都是一樣多的。”
都芳看到祖暅如此說:“這不是廢話嗎?不管怎麽放,當然都是一樣多的了。”
祖暅說:“那是因為這兩排銅錢,每一層都是一樣。”
都芳對祖暅說的話,更摸不著頭腦,但是看到祖暅已經有了某種發現。
祖暅說:“我知道,劉徽的對於球體的計算是錯誤的。”
都芳說:“他提出的難方法是取每邊為1寸的正方體棋子八枚,拚成一個邊長為2寸的正方體,在正方體內畫內切圓柱體,再在橫向畫一個同樣的內切圓柱體。這樣兩個圓柱所包含的立體共同部分像兩把上下對稱的傘,劉徽將其取名為“牟合方蓋”。根據計算得出球體積是牟合方蓋體的體積的四分之三,可是圓柱體又比牟合方蓋大,但是《九章算術》中得出球的體積是圓柱體體積的四分之三,顯然《九章算術》中的球體積計算公式是錯誤的。劉徽認為隻要求出牟合方蓋的體積,就可以求出球的體積。可怎麽也找不出求導牟合方蓋體積的途徑。”
祖暅說:“我想到了,隻要使用剛剛那個銅錢的原理,就可以計算出來球體體積了。”
都芳疑惑的說:“你剛剛發現了什麽原理?”
祖暅說:“太簡單了。“兩個同高的立體,如在等高處的截麵積相等,則體積相等。更詳細點說就是,界於兩個平行平麵之間的兩個立體,被任一平行於這兩個平麵的平麵所截,如果兩個截麵的麵積相等,則這兩個立體的體積相等。”
都芳說:“這如果求球體體積?找一個跟球體登高的東西嗎?”
祖暅說:“知道半球體,就會知道整個球體體積。而半球體與圓柱取出其中圓錐剩下的”
祖暅說著,畫出了一個半球體,然後在旁邊對齊畫出登高圓柱體,這個圓柱體直徑與半球體直徑一樣。
祖暅在圓柱體裏畫出了一個與圓柱等高的圓錐,並且指示這部分的圓錐已經取出來了。
都芳說:“那就留下了一個缺圓錐的圓柱了。怎麽證明,這部分跟旁邊的半球體積一樣。”
祖暅說:“跟剛剛小孩那兩排8枚銅錢的原理一樣。”
祖暅說著,畫出任一截麵,截取了缺圓錐圓柱體和半球,把截取的這兩個麵積畫出來。
祖暅對都芳說:“不論我的截麵如何挪動,你都能發現半球截麵和那缺圓錐圓柱的截麵是相等的。隻要我能求出這個缺圓錐圓柱的體積,就可以求出半球體。”
都芳說:“缺圓錐的圓柱是原來圓柱的三分之二的體積啊。所以一個球體體積應該是。”
都芳邊想邊算,說:“所以一個球體是這個圓柱的三分之四的體積。”
祖暅說:“劉徽居然認為是四分之三,他算反了,哈哈哈。”